27 research outputs found

    Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    Get PDF
    Abstract Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine peptide nucleic acid (PNA) conjugates were investigated in terms of PCI assisted cellular activity. It is found that tetramethylrhodamine and Alexa Fluor 555 conjugated octaarginine PNA upon irradiation exhibit more than ten-fold increase in antisense activity in the HeLa pLuc705 luciferase splice correction assay. An analogous fluorescein conjugate did not show any significant enhancement due to photobleaching, and neither did an Alexa Fluor 488 conjugate. Using fluorescence microscopy a correlation between endosomal escape and antisense activity was demonstrated, and in parallel a correlation to localized formation of ROS assigned primarily to singlet oxygen was also observed. The results show that tetramethylrhodamine (and to lesser extent Alexa Fluor 555) conjugated octaarginine PNAs are as effectively delivered to the cytosol compartment by PCI as by chloroquine assisted delivery and also indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore

    Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis

    Get PDF
    Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates.Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression.Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts.Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design

    Anti-diabetic potential of plant alkaloids:Revisiting current findings and future perspectives

    No full text
    Diabetes mellitus (DM) is a chronic metabolic disease which causes millions of death all over the world each year, and its incidence is on increase. The most prevalent form, type 2 DM, is characterized by insulin resistance and beta-cell dysfunction, whereas type 1 DM is due to insulin deficiency as a result of beta-cell destruction. Various classes of synthetic drugs have been developed to regulate glucose homeostasis and combat the development of late-diabetic complications. However, several of these chemical agents are either sub-optimal in their effect and/ or may have side effects. Biologically, alkaloids unveiled a wide range of therapeutic effects including antidiabetic properties. The chemical backbones of these compounds have the potential to interact with a wide range of proteins involved in glucose homeostasis, and thus they have received increasing attention as reliable candidates for drug development. This review sets out to investigate the anti-diabetic potential of plant alkaloids (PAs), and therefore, scientific databases were comprehensively screened to highlight the biological activity of 78 PAs with a considerable anti-diabetic profile. There are not enough clinical data available for these phytochemicals to follow their fingerprint in human, but current studies generally recommending PAs as potent alpha-glucosidase inhibitors. Except for some classes of monoterpene alkaloids, other compounds showed similar features as well as the presently available anti-diabetic drugs such as amino sugars and other relevant drugs. Moreover, the evidence suggests that PAs have the potential to be used as alternative additives for the treatment of DM, however, further in vitro and in vivo studies are needed to validate these findings
    corecore